Performance Evaluation of Alternative Relative Orientation Procedures for UAV-based Imagery with Prior Flight Trajectory Information

نویسنده

  • F. He
چکیده

Thanks to recent advances at the hardware (e.g., emergence of reliable platforms at low cost) and software (e.g., automated identification of conjugate points in overlapping images) levels, UAV-based 3D reconstruction has been widely used in various applications. However, mitigating the impact of outliers in automatically matched points in UAV imagery, especially when dealing with scenes that has poor and/or repetitive texture, remains to be a challenging task. In spite of the fact that existing literature has already demonstrated that incorporating prior motion information can play an important role in increasing the reliability of the matching process, there is a lack of methodologies that are mainly suited for UAV imagery. Assuming the availability of prior information regarding the trajectory of a UAV-platform, this paper presents a two-point approach for reliable estimation of Relative Orientation Parameters (ROPs) of UAV-based images. This approach is based on the assumption that the UAV platform is moving at a constant flying height while maintaining the camera in a nadir-looking orientation. For this flight scenario, a closed-form solution that can be derived using a minimum of two pairs of conjugate points is established. In order to evaluate the performance of the proposed approach, experimental tests using real stereo-pairs acquired from different UAV platforms have been conducted. The derived results from the comparative performance analysis against the Nistér five-point approach demonstrate that the proposed two-point approach is capable of providing reliable estimate of the ROPs from UAV-based imagery in the presence of poor and/or repetitive texture with high percentage of matching outliers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Vision-Based and GPS-Signal-Independent Approach in Jamming Detection and UAV Absolute Positioning Assessment

The Unmanned Aerial Vehicles (UAV) positioning in the outdoor environment is usually done by the Global Positioning System (GPS). Due to the low power of the GPS signal at the earth surface, its performance disrupted in the contaminated environments with the jamming attacks. The UAV positioning and its accuracy using GPS will be degraded in the jamming attacks. A positioning error about tens of...

متن کامل

GPS Jamming Detection in UAV Navigation Using Visual Odometry and HOD Trajectory Descriptor

Auto-navigating of unmanned aerial vehicles (UAV) in the outdoor environment is performed by using the Global positioning system (GPS) receiver. The power of the GPS signal on the earth surface is very low. This can affect the performance of GPS receivers in the environments contaminated with the other source of radio frequency interference (RFI). GPS jamming and spoofing are the most serious a...

متن کامل

Midcourse Trajectory Shaping for Air and Ballistic Defence Guidance Using Bezier Curves

A near-optimal midcourse trajectory shaping guidance algorithm is proposed for both air and ballistic target engagement mission attributes for generic long range interceptor missile. This guidance methodology is based on the maximum final velocity as the objective function and maximum permissible flight altitude as the in-flight state constraint as well as the head-on orientation as the termina...

متن کامل

Trim and Maneuverability Analysis Using a New Constrained PSO Approach of a UAV

Performance characteristic of an Unmanned Air Vehicle (UAV) is investigated using a newly developed heuristic approach. Almost all flight phases of any air vehicle can be categorized into trim and maneuvering flights. In this paper, a new envelope called trim-ability envelope, is introduced and sketched within the conventional flight envelope for a small UAV. Optimal maneuverability of the inte...

متن کامل

Unmanned aerial vehicle field sampling and antenna pattern reconstruction using Bayesian compressed sensing

Antenna 3D pattern measurement can be a tedious and time consuming task even for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this paper, with the aim of minimum duration of flight, a test scenario using unmanned aerial vehicles (UAV) is proposed. A pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016